ABSTRACT
Crude oil spill is hazardous
to soil and subsequently affects food production. Certain plants however
tolerate and/or improve the mineral deficiency imposed by crude oil. Also, due
to the ability of bacteria to degrade crude oil, plants that enhance the abundance
of soil bacteria under pollution have been under investigation. The effects of
crude oil on the bacterial count and mineral constituents of soil rhizosphere
of Delonixregia were investigated. The effects of D. regia on
total bacterial count and mineral constituents were tested. A total of 96
polythene bags were filled, each with 18 kg of soil. Four soil bags each
containing a seedling of D. regia and four without seedlingwere polluted
with 30 ml of crude oil. This was repeated using 150 ml and 750 ml of crude
oilwhile the control was not polluted. The experiment was set up in 3
replicates in a completely randomized design. After one month, the soil
bacterial count and mineral composition were analyzed using standard
techniques. Bacterial analysis was repeated after the second and third month of
pollution. Some vegetative parameters were taken before and after pollution.
The results of the 1st and 2nd bacterial counts revealed
a significant (P<0.05) increase in soils treated with 750 ml of crude oil but
a decrease in bacterial count of soil treated with 30 ml and 150 ml crude oil
compared with the control. The results of the 3rd count revealed
significant (P<0.05) decrease in polluted soils compared to the control.
Identified bacteria include Pseudomonas, Bacillus, Proteus and Micrococcus
species. Bacterial count was slightly higher in unvegetated soil than in
the vegetated one. Polluted soil depicted a significant (P<0.05)
increase in cation exchange capacity, carbon and organic matter contents but a
decrease in pH, available phosphorus and % nitrogen compared to the control.
Carbon and organic matter contents as well as % nitrogen were reduced in
vegetated soils compared to the unvegetated soil. There were significant
differences in sodium, potassium, calcium, and magnesium among different
treatments and between the unvegetated and vegetated soils at different levels
of significance. The bacterial count was influenced by crude oil concentration,
duration of the pollutant, presence of D. regia and some mineral
constituents in the soil.
TABLE OF CONTENTS
Title Page
List of Tables
List of Figures
Abstract
Table of Content
CHAPTER ONE
1.0 Introduction
1.1 Relevance of Microorganisms in the Soil
1.2 Delonixregia
1.3 Objectives of this research
CHAPTER TWO
2.0 Literature Review
2.1 Mineral Composition of Polluted Soil
2.2 Bacterial Characteristics of Polluted Soil
2.3 Effects of Rhizosphere on soil Bacteria
2.4 Phytoremediation
CHAPTER THREE
3.0 Materials and methods
3.1 Collection of Materials
3.2 Breaking of Seed Dormancy
3.3 Experimental Design
3.4 Determination of Mineral Constituents
3.4.1 Carbon and Organic matter
3.4.2 Available phosphorus
3.4.3Soil pH
3.4.4 Total Nitrogen
3.4.5Metal ions and Cation exchange capacity
3.4.5.1 Calcium and magnesium
3.4.5.2 Sodium and Potassium
3.4.5.3 Cation exchange capacity
3.5Bacterial count and identification
3.6 Vegetative Parameters
3.7 Data Analysis
CHAPTER FOUR
4.0 RESULTS
4.1 Breaking of seed dormancy and germination
4.2 Bacterial Enumeration
4.2.1 Effect of D. regia on total viable count of bacteria
4.2.2Variations in the bacterial load with time
4.3 Results of biochemical tests for identification of bacteria
4.4 Isolated bacteria and their diversity at different levels of crude oil contamination
4.5 Mineral elements composition
4.6 Vegetative parameters
CHAPTER FIVE
5.0 Discussion
5.1 Bacterial load
5.2Mineral constituents
5.3 Vegetative parameters
5.4 Conclusion
References
CHAPTER ONE
1.0 INTRODUCTION
Crude oil is physically, chemically and biologically harmful to soil because it contains many toxic compounds in relatively high concentrations (Franco et al., 2004). Soil contamination can result in soil degradation, bring great loss to agricultural production and pose threat to human health (Lijuan, 2012). Crude oil spill is a common event in Nigeria especially in the Niger Delta areas of the country. Spills may arise from oil well drilling, production operations, transportation, refining, storage and marketing. It could also be from anthropogenic sources such as sabotage or accidental spills such as ruptured oil pipelines (Oberdorster and Cheek, 2000). Presently there are eleven oil corporations operating about 159 oil wells in Niger Delta region of Nigeria. Record indicates that the Niger Delta region of Nigeria experiences on the average, 273 oil spills resulting to about 115,000 barrels of crude oil annually from 1983-2005 making the region most vulnerable to oil spill than anywhere in the world (Agbogidi et al., 2009). Some recent oil spill in Nigeria include Assa-Rumekpe pipeline at Elele Alumini in 2014, Amukpe trunk line at Amukpe in 2011, Nkpoku Bomu pipeline at Ekporo in 2014, Nun-river Kolo creek at Oporoma in 2013 (SPDC, 2014). Oil spillage has immense impact on the ecosystem into which it is released. Contamination of soil arising from oil spills is one of the most limiting factors to soil fertility (Onwurah et al., 2007). It affects growth of plants (Nwadinigwe and Onwumere, 2003) and causes great negative impacts on food productivity (Onwurah et al., 2007). The work of Nwadinigwe and Uzodimma (2005) indicated the inhibitory effect of crude oil on the germination, growth and reproductive performance of Arachis hypogaea. Germination, growth and pod production of Glycine max have also been found to be inhibited by crude oil pollution (Nwadinigwe and Onwumere, 2003). Yellowing, dropping of leaves and complete shedding of leaves in areas of heavy pollution have been reported by Opeolu (2000). Environmental cleanup of crude oil can take several years (Short et al., 2002) and problems associated with the study and remediation of the polluted ecosystem can be very expensive. The legal problems related to compensation in terms of assigning monetary reward may bring serious controversy. Nigerian regulation of the oil industry is weak and rarely enforced, allowing in essence the industry to self-regulate. The ecosystem especially the agricultural sectors are very much prone to the adverse effects of oil pollution, since there has been no concerned and effective effort on the part of the government, let alone the oil operators, to control this environmental problem. Yet, there is still an extensive network of pipelines between the fields as well as numerous small networks of flow lines in the oil fields such as in the Niger Delta area, allowing more oil spill (Anderson, 2005).
1.1 RELEVANCE OF MICROORGANISMS IN THE SOIL
Microorganisms are important for soil quality and fertility. They play a major role in decomposition of organic matter, degradation of chemical pollutants and mineralization in the soil (Brussard, 1994). Amongst the different microorganisms inhabiting the soil, bacteria are the most abundant and predominant organisms (Hirsch, 1996). Bacteria and other microbes are chemical processors, tiny biotechnologists, capable of catalyzing thousands of chemical reactions that higher organisms are incapable of mediating. It has been reported that bacteria constitute the principal agents of hydrocarbon biodegradation (Jensen, 1975). It is well known that soil micro-flora and fauna can be manipulated indirectly through crop management practices. Similarly, cultivation of legumes leads to increased number of their compatible rhizobia (Hirsch, 1996)......
================================================================
Item Type: Project Material | Attribute: 58 pages | Chapters: 1-5
Format: MS Word | Price: N3,000 | Delivery: Within 30Mins.
================================================================
No comments:
Post a Comment