DENTAL FLUOROSIS IN A RURAL NIGERIAN COMMUNITY: IS THE WATER TO BLAME?

ABSTRACT
Drinking water can contain fluoride which is effective in preventing dental caries at concentration of ≤1.5 mg/L however at concentrations ≥1.5 mg/L, it could lead to dental fluorosis. Dental fluorosis is a disorder that occurs due to excessive fluoride intake during the mineralization of the teeth, resulting in an uneven distribution of brown and yellow coloration. I assessed fluoride levels in 19 samples of natural water sources (such as boreholes, streams, and wells) and commercial drinking water sources (such as sachet and bottled water products) in Zing Local Government Area, Taraba State, northeastern Nigeria, I then determined the prevalence of dental fluorosis in 135 children, aged 10 to 17 years, who were born in Zing. Using cross tabulations and logistic regression modelling, I evaluated factors that might influence whether a child had dental fluorosis, such as dental care habits and drinking water source. Fluorosis occurred in 111 respondents. Fluoride levels exceeded the World Health Organization permissible limit of 1.0mg/L for tropical environments in most borehole samples, while most stream and well samples did not exceed this limit. The regression model showed that odds of a child having dental fluorosis were higher for those children who drank borehole water compared to those who do not (OR = 8.522), while the odds of having fluorosis decreases for children who drink from stream water (OR = 0.203). Consequently, community boreholes may need to be de-fluoridated and there should be community awareness about the sources of water with high fluoride concentrations.
Keywords: Boreholes, dental fluorosis, drinking water, fluoride, Nigeria, streams, wells

TABLE OF CONTENTS

ABSTRACT
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
LIST OF ABBREVIATIONS

CHAPTER 1
INTRODUCTION
Signs of Dental Fluorosis
Sources of Fluoride in the Environment and Human Body
Stages of Dental Fluorosis
Dental Fluorosis Correction
Methods of Water De-fluoridation
HYPOTHESES
AIMS AND OBJECTIVES

CHAPTER 2
MATERIALS AND METHODS
Study Area
Data Collection and Analysis
Ethical Guidelines

CHAPTER 3
RESULTS

CHAPTER 4
DISCUSSION
Limitations of Study
Challenges
Recommendations

CHAPTER 5
CONCLUSION
APPENDIX I
APPENDIX II
REFERENCES


CHAPTER ONE
INTRODUCTION
Water is a very important basic requirement for human life and that is why water quality is an important factor and a key area of concentration in public health. Fluoride, is an important element considered to be beneficial at low concentrations and toxic at high concentrations when present in water. Fluoride is toxic as a result of its strong affinity for calcium, this gives it the ability to react with structures that are made of calcium such as teeth and bones. The World Health Organization (WHO) guideline for permissible fluoride concentration in drinking water is set at 1.5 mg/L (WHO, 2011). However, the WHO has emphasized the need for national authorities to set national fluoride standards taking into consideration climatic condition, fluoride intake from alternative sources, and daily water intake (Lennon, Whelton, O'Mullane, & Ekstrand, 2005).
Common techniques used to detect fluoride levels include fluoride ion selective electrode method, calorimetric methods, ion chromatography methods, and use of photometer (Agency for Toxic Substances and Disease Registry, 2001).
For many years, there has been a global public health debate about both the beneficial and adverse effects of fluoride in water sources (UNICEF, 1999). This debate first came about in the 1930s and 1940s when a study revealed that fluoride concentrations below 1.5 mg/L in water is effective in preventing tooth decay, otherwise known as dental caries (Dean & Brandt Jr, 1974). According to jones et al. (2005), dental caries affects approximately 60-90% of school children in most developed countries. In addition, Jones et al. (2005) also identified Latin American and Asia as the continents with the highest prevalence of dental caries.
According to Gussy et al. (2008), fluoride provides protection to the teeth in two ways; pre and post eruption. The pre-tooth eruption occurs while the tooth is still developing. Dental tissues, especially the enamel, are incorporated with fluoride giving them the ability to resist de-mineralization. The post-eruptive stage occurs when there is topical contact between the fluoride and erupted teeth enhances the ability of the teeth to replace surface minerals on the teeth. In addition, jones et al. (2005) highlighted that fluoride improves the chemical structure of the dental enamel and it also reduces the acid formation ability of plaque bacteria. All these properties further emphasized by gussy et al. (2008), makes fluoride an effective agent in preventing dental caries.
Despite the effectiveness of fluoride in combating dental caries, in high concentrations, fluoride could lead to a condition called dental fluorosis (Dean,

1934). Dental fluorosis, also referred to as Colorado brown stain, is a disorder that occurs during the mineralization of the teeth, resulting in an uneven distribution of brown and yellow coloration. McKay (1952) refers to dental fluorosis as the mottling of the enamel. The teeth appear opaque, disfigured, and discolored (Soto-Rojas et al., 2004). This defect occurs in children between the ages of 0 and 8 when the teeth is still developing (Beltran-Aguilar, Barker, & Dye, 2010).
Dean and Brandt Jr. (1974) were one of the first researchers to show the relationship between dental caries and dental fluorosis in respect to fluoride concentration in

For more Environmental Science Projects click here
================================================================
Item Type: Project Material  |  Attribute: 57 pages  |  Chapters: 1-5
Format: MS Word  |  Price: N3,000  |  Delivery: Within 2hrs
================================================================

Share:

No comments:

Post a Comment

Select Your Department

Featured Post

Reporting and discussing your findings

This page deals with the central part of the thesis, where you present the data that forms the basis of your investigation, shaped by the...

Followers